

Indian Streams Research Journal

WEAKLY PSEUDO IDEALS OF A Γ-SEMINEAR RING

Dr. S. J. Alandkar

Head and Associate Professor, Department of Mathematics & Statistics, Walchand College of Arts and Science, Solapur [M.S.]

ABSTRACT:

In this paper, the concept of pseudo ideal of a Γ -seminear ring is introduced and discussed some of its properties .

AMS Classification: 08A72, 03E72

KEY-WORDS: Γ-semi-nearring, pseudo ideals of a Γ-semi-nearring.

§1. INTRODUCTION.

Near rings were firstly introduced by Fittings. Near rings[5] can be thought of as generalized rings: if in a ring we ignore the commutativity of addition and one distributive law. The concept of Γ - ring was introduced by Nobusawa [3] and a generalization of the concept namely, Γ - near ring was introduced by Satyanarayana [9]. Further M. K. Rao [7]studied Γ -semir ring and then S. Pianskool at el [6] and N. K. Saha at el [8, 11] defined Γ - semi-near rings and studied its properties. Various types of ideals in near rings and Γ - near ring are studied in articles [1, 10, 12].

Berman G. and Silverman R. J.[2] have initiated a study of pseudo ideals of a near ring. A nonempty subset I of a near ring N is a left pseudo ideal of N if $(ni-n0) \in I$; a right pseudo ideal of N if $(in) \in I$ for all $i \in I$, $n \in N$ and a pseudo ideal of N if it is both a left pseudo ideal and a right pseudo ideal. As a generalization of the concept of pseudo ideal of a near-ring, Pawar Y. S. and Pandharpure V. B.[4] have introduced weakly pseudo ideal of a near ring. A nonempty subset I of a near ring N is a left weakly pseudo ideal of N if $(n^2i - n^20) \in I$ for all $i \in I$ and $n \in N$, a right weakly pseudo ideal of N if (in²) $\in I$ for all $i \in I$ and $n \in N$; and a weakly pseudo ideal of N if it is both a left weakly pseudo ideal and a right weakly pseudo ideal.

In this Paper, we introduce the concept of weakly pseudo ideals of a Γ - seminear ring and study its properties. Throughout this chapter M denotes a right Γ -seminear ring and we shall call it Γ -seminear ring only unless otherwise specified.

§2.1. WEAKLY PSEUDO IDEALS OF A Γ -SEMI NEAR RING.

We begin with the following definition.

Definition 2.1. Seminear ring:—A nonempty set N together with two binary operations '+' and '·' satisfying the following conditions, is said to be a seminear ring.

- i) (N, +) is a semigroup,
- ii) (N, \cdot) is a semigroup,
- iii) $(x+y)\cdot z = x\cdot z + y\cdot z$ for all $x, y, z \in N$.

Precisely speaking 'seminear ring' is a 'right seminear ring' here since every seminear ring satisfy one distributive law (left / right distributive law).

Every near ring is a seminear ring but every seminear ring need not be a near ring. For this we consider the following Example.

Example 1:-Let $N = \{\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ / a, b be nonnegative integers}, (N, +, .) is seminear ring under the matrix addition and matrix multiplication. Here N is a seminear ring which is not a near ring since (N, +) is a semigroup but not a group since additive inverse does not exist for all members of N.

Definition 2.2. Γ-near ring:-Let (M, +) be a group (need not be abelian) and Γ be a nonempty set. Then $M = (M, +, \Gamma)$ is a Γ -near ring if there exists a mapping $M \times \Gamma \times M \rightarrow M$ (the image of $(x, \alpha, y) \rightarrow x\alpha y$) satisfying the following conditions .

- i) (M, +, 0) is a right near ring,
- ii) $x\alpha(y\beta z) = (x\alpha y) \beta z$ for all $x, y, z \in M$ and α , $\beta \in \Gamma$.

Precisely speaking ' Γ -near ring' is a ' Γ -near ring'.

Every near ring is a special type of Γ -near ring for singleton set Γ whereas every Γ -near ring a near ring for each member of Γ . See the following example.

Example 2: Let $G = Z_8 = \{0, 1, 2, ...7\}$, the additive group of integers modulo 8 and $X = \{a, b\}$. Define $m_i: X \rightarrow G$, $m_i(a) = 0$, $m_i(b) = i$, for $0 \le i \le 7$. such that $M = \{m_0, m_1, ..., m_7\}$ and let $\Gamma = \{g_0, g_1\}$ where $g_i: G \rightarrow X$ define by

$$g_0 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a & a & a & a & a & a & a & a \end{pmatrix}, \quad g_1 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a & a & a & b & a & a & a & b \end{pmatrix}$$

For $m \in M$, $g \subseteq \Gamma$, $x \subseteq G$. Take mgx = m(g(x)).

Then $(M, +, \Gamma)$ becomes Γ -near-ring.

Definition 2.3. Γ-seminear ring:-Let M be an additive semigroup and Γ be a nonempty set. Then a semigroup (M, α) is called a right Γ -seminear ring if there exists a mapping M × Γ× M \rightarrow M (denoted by (a, α, b) \rightarrow aαb) satisfying the conditions:

- i) $(a+b) \alpha c = a\alpha c + b\alpha c$,
- ii) $a\alpha(b\beta c) = (a\alpha b)\beta c$

for all a, b, c \subseteq M and α , $\beta \in \Gamma$. Precisely speaking ' Γ -seminear ring' to mean 'right Γ -seminear ring'.

Every Γ -near ring is a Γ -seminear ring but every Γ -seminear ring need not be a Γ -near ring. For this we consider the following Example.

Example 3: Let $M = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ / a, b be nonnegative integers $\} = \Gamma$, Then $(M, +, \Gamma)$ is Γ - seminear ring under the matrix addition and matrix multiplication. Here N is a seminear ring which is not a near ring since (M, +) is a semigroup but not a group since additive inverse does not exist for all members of M. Define $M \times \Gamma \times M \to M$ (denoted by $(a, \alpha, b) \to a\alpha b$) where $a\alpha b$ is matrix multiplication of a, α, b Then M is a Γ-seminear ring but not a Γ-near ring. Since (M, +) is a semigroup which is not a group.

Definition 2.4. Sub-Γ**-seminear ring:** Let M be a Γ **-seminear ring.** A nonempty subset M' of M is a sub- Γ **-seminear ring** of M if M' is also a Γ **-seminear ring** with the same operations of M.

Definition 2.5. Ideal of a Γ-seminear ring:-A subset I of a Γ -seminear ring M is a left (resp. right) ideal of a Γ -seminear ring M if I is a subsemigroup of M and Γ and Γ and Γ for all x, y \in I and Γ \in M, α \in Γ .

If I is both left as well as right ideal then we say that I is an ideal of M.

Example 4: Consider the example of Γ -seminear ring (M, +, .) mentioned above. We have $I = \{\begin{bmatrix} 2a & 2b \\ 0 & 0 \end{bmatrix}$ / a, b be nonnegative integers} is an ideal of M.

Definition 2.6: A subset I of M is a left (resp. right) pseudo ideal of M if

- (i) (I, +) is a normal subgroup of (M, +),
- (ii) $x\alpha a x\alpha 0 \in I$ ($a\alpha x \in I$) for all $a \in I$, $x, y \in M$ and $\alpha \in \Gamma$.

Definition 2.7: A subset I of M is a left (resp. right) weakly pseudo ideal of M if (i) (I, +) is a normal subgroup of (M, +),

(ii) $x\alpha x\alpha a - x\alpha x\alpha 0 \in I$ ($a\alpha x\alpha x\in I$) for all $a\in I$, $x\in M$ and $\alpha\in \Gamma$.

A weakly pseudo ideal of M is both a left weakly pseudo ideal and a right weakly pseudo ideal.

Example 5: - Let (M, +) be an additive group where $M = \{0, a, b, c\}$ and $\Gamma = \{\square, \beta\}$ be a nonempty set of binary operations on M as shown in the tables.

+	0	a	b	c	
0	0	a	b	c	
a	a	0	c	b	
b	b	c	0	a	
C	C	h	9	0	

α	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
c	0	a	c	c

β	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
С	0	0	0	0

Then $(M, +, \Gamma)$ is a Γ -near ring and $I = \{0, a\}$ is a weakly pseudo ideal of M which is also an ideal as well as pseudo ideal

Example 6: Let (M, +) be an additive group where $M = \{0, a, b, c\}$ and $\Gamma = \{\alpha, \beta\}$ be a nonempty set of binary operations on M as shown in the tables.

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
С	С	b	a	0

α	0	a	b	c
0	0	0	0	0
a	0	b	0	b
b	0	0	0	0
С	0	b	0	b

β	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
c	0	0	0	0

Then $(M, +, \Gamma)$ is a Γ -near ring and $I = \{0, a\}$ is a weakly pseudo ideal of M (For e.g., $b\alpha b\alpha a - b\alpha b\alpha 0 = 0\alpha a - 0\alpha 0 = 0 - 0 = 0 \in I$) which is neither an ideal (For e.g., $a\alpha$ (b+a) $-a\alpha b = a\alpha c - a\alpha b = b - 0 = b \notin I$) nor a pseudo ideal of M. (For e.g., $c\alpha b = c = c \notin I$).

Note that left weakly pseudo ideal and right weakly pseudo ideal are independent concepts.

Example 7: Let (M, +) be an additive group such that $M = \{0, a, b, c\}$ and $\Gamma = \{\alpha, \beta\}$ be a nonempty set of binary operations on M as shown in the following tables.

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
С	c	b	a	0

α	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
c	0	a	c	c

β	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
c	0	0	0	0

In the above example, $I = \{0, b\}$ is a right weakly pseudo ideal of M which is not left weakly pseudo ideal. Since $c \alpha c \alpha b - c \alpha b - c \alpha c \alpha b - c \alpha b -$

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

α	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	a	b	c
С	0	a	b	c

β	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
С	0	0	0	0

In the above example, $I = \{0, c\}$ is a left weakly pseudo ideal of M which is not right weakly pseudo ideal. Since $c \alpha b \alpha b = b \alpha b = b \alpha b = b \alpha E I$.

In the following theorem we see that intersection of any family of weakly left (resp. right) pseudo ideals of M is a weakly left (resp. right) pseudo ideal of M respectively.

Theorem 2.8: - Every left(right) pseudo ideal of M is a left(right) weakly pseudo ideal of M.

Proof: Let <M, +, $\alpha >$, $\alpha \in \Gamma$ be a Γ -near ring. Let I be a pseudoleft ideal in M. So, <I, +> is a normal subgroup of < M, +> and $n\alpha i - n\alpha 0 \in I$ for all $i \in I$, , $\alpha \in \Gamma$ and for all $n \in M$. If $n \in M$ then $n\alpha n = n^2 \in M$. Hence $n^2\alpha i - n^2\alpha 0 \in I$ for all $I \in I$, $\alpha \in \Gamma$ and for all $n \in M$. Thus I is a left weakly pseudo ideal.

Now if I be a pseudo right ideal in M. Then $i\alpha n \in I$ and as $n\alpha n = n^2 \in M$ we have $i\alpha n^2 \in I$ for for all $i \in I$, $\alpha \in I$ and for all $n \in M$. Thus I is a right weakly pseudo ideal.

Theorem 2.9 : - Let M be a commutative Γ -semi near ring. Then I is a left weakly pseudo ideal of M if and only if I is a fuzzy right weakly pseudo ideal of M.

Proof: Let M be a commutative Γ-semi near ring. Let I is a left weakly pseudo ideal. So $n^2\alpha i - n^2\alpha 0 \in I$ for all $I \in I$, $\alpha \in \Gamma$ and for all $n \in M$. But M is a commutative Γ-near ring. Then $n^2\alpha i - n^2\alpha 0 = i\alpha n^2 - 0 = i\alpha n^2 = i\alpha n$

Conversely if < I, +> is a normal subgroup of < M, +> and I is a weakly pseudoideal of M such that left weakly pseudo ideal is equal to right weakly pseudoideal. Then for right weakly pseudo ideal I we have $i\alpha n^2 - 0\alpha n^2 = i\alpha n^2 - 0 = i\alpha n^2 = n^2\alpha i - 0 = n^2\alpha i - n^2\alpha 0 \in I$ for all $I \in I$, $\alpha \in \Gamma$ and for all $n \in M$. Thus I is a commutative Γ -semi near ring. Consequently M is a Γ -seminear ring.

Theorem 2.10:- Intersection of any collection of weakly left (resp. right) pseudo ideals of M is a weakly left (resp. right) pseudo ideal of M.

Proof: Let $\{\mu_{[\lambda]}/\lambda \in \Lambda$, where Λ is an index set} be a family of weakly left pseudo ideals of M. Let x, y, $a \in M$.

Let $I = \bigcap_{\lambda \in \Lambda} \{ I_{\lambda} / \lambda \in \Lambda, \text{ where } \Lambda \text{ is an index set} \}$ be a family of left pseudo ideals of M. Since $I_{\lambda} \neq \emptyset$ for all λ and $0 \in \bigcap_{\lambda \in \Lambda} I_{\lambda} = I$. So, $I \neq \emptyset$.

Also intersection of any collection of normal subgroups in N being normal. We get $\langle I, + \rangle$ is a normal subgroup in $\langle M, + \rangle$. Let $i \in I$, where I_{λ} is a pseudo left ideals of M.

By definition of pseudo left ideals of M, $n\alpha n\alpha i - n\alpha n\alpha 0 \in I_{\lambda}$ for all I_{λ} , $\alpha \in \Gamma$. Hence, $n\alpha n\alpha i - n\alpha n\alpha 0 \in I_{\lambda}$ for all I_{λ} , $\alpha \in \Gamma$ and for all $n \in M$. Thus $n\alpha n\alpha i - n\alpha n\alpha 0 \in I$ for all $i \in I$, $\alpha \in \Gamma$ and for all $n \in M$ i.e. I is a left weakly pseudo ideal of M.

Now Let $I = \bigcap_{\lambda \in \Lambda} \{ I_{\lambda} / \lambda \in \Lambda, \text{ where } \Lambda \text{ is an index set} \}$ be a family of right weakly pseudo ideals of M. Since $I_{\lambda} \neq \emptyset$ for all λ and $0 \in \bigcap_{\lambda \in \Lambda} I_{\lambda} = I$. So, $I \neq \emptyset$.

Also intersection of any collection of normal subgroups in N being normal. We get < I, +> a normal subgroup in < M, +>. Let $i \in I$, where I_{λ} is a weakly pseudo right ideals of M.

By definition of weakly pseudo right ideals of M, $i\alpha n\alpha n \in I_{\lambda}$ for all I_{λ} , $\alpha \in \Gamma$.

Hence, $i\alpha n \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$ for all I_{λ} , $\alpha \in \Gamma$ and for all $n \in M$. Thus $i\alpha n\alpha n \in I$ for all $i \in I$, $\alpha \in \Gamma$ and for all $n \in M$ i.e. I is a right pseudo ideal of M.

REFERENCES

- 1. **S. J. Alandkar**, Pseudo ideals of Γ semi-near rings, Golden Research Thoughts, Vol. 6, Issue 6, July 2016 pp 1-4.
- 2. G.Berman and R. J. Silverman, "Near-rings", American Mathematical Monthly, 66 (1959),23-34.
- 3. N. Nobusawa, On a generalization of the Ring Theory, Osaka, J. Maths.1(1964) 81-89.
- 4. Y.S.Pawar and V.B.Pandharpure, Ideals and Bi-ideals in near-rings. News Bull. Cal. Math. Soc. 27 (4-6) (2004) 5-12.
- 5. **G. Pilz,** Near Rings, North-Holland, Amsterdam, 1983.
- 6. **S.Pianskool and P.Khachorncharoenkul,** Simple Γ- semi-near rings, Journal of Mathematics Research, Vol. 1, No. 2 (2009),124-129.
- 7. **M. K. Rao,** Γ- semiring I, Southeast Asian Bulletin of Maths., 19(1995) 49-54.
- 8. **N. K. Saha**, On Γ- seminear ring II, Bull. Calcutta Math. Soc. 79(6) (1987), 331-335.
- 9. **Bh. Satyanarayan**, A Note on Γ-Near-Ring , Indian Journal of Mathematics, B. N. Prasad Birth Centenary Commemoration , Vol.41, No. 3 (1990) ,427-433.
- 10. M. K. Sen, On pseudo-ideals of semi-group, Bull. Calcutta Math. Soc. 67 (1975), 109-114.
- 11. S. K.Sen and N. K. Saha, On Γ- seminear ring I, Bull. Calcutta Math. Soc., 78 (1986), no.3, 180-186.
- 12. Wang Xue-Kuan, On pseudoideals of division rings, Journal of Mathematical Research and Exposition (1988-02).

S. J. Alandkar

Head and Associate Professor, Department of Mathematics & Statistics, Walchand College of Arts and Science, Solapur [M.S.]